

MBE-003-1011002

Seat No. _____

[Total Marks: 70

B. Sc. (Sem. I) (CBCS) Examination

November / December - 2016 Physics: Paper - 101 (New Course)

Faculty Code: 003 Subject Code: 1011002

Time : $2\frac{1}{2}$ Hours]

Instructions: (1) All the question are compulsory

- Give answers of all questions in answer book only.
- Figures on the right side indicate full marks. (3)
- 1 Answer following objective questions: (a)

4

- (1) What is the basic difference between vector and scalar?
- If the angle between two vectors is 90°, their (2) scalar product will be _____.
- What will be the phase difference between voltage (3) and current in case of a pure resistor?
- (4) What is secondary cell?
- (b) Answer any one question:

2

- If $|\vec{A} + \vec{B}| = |\vec{A} \vec{B}|$ then show $\vec{A} \perp \vec{B}$
- A 1 μF capacitor is connected in series with 2 $m\Omega$ resistor to a 300 volt d.c. source. Determine the initial charging current and final charge.
- Answer any one question: (c)

3

- (1) Explain the resolution of vectors in a plane.
- How much time it will take for voltage to decay (2)from 100 V to 50 V in an R-C series circuit of time constant 1 sec?

	(d)	Answer any one in detail :		5
		(1)	Describe vector triple product.	
		(2)	Obtain an expression for growth and decay of charge on R-C circuit.	
2	(a)	Answer following objective questions.		4
		(1)	In a semiconductor, current conduction is due to	
		(2)	With forward bias to a pn junction, the width of depletion layer	
		(3)	Define intrinsic semiconductor.	
		(4)	What is doping?	
	(b)	Answer any one question:		2
		(1)	Explain how the energy bands form ?	
		(2)	Explain the effect of temperature on extrinsic semiconductor.	
	(c)	Ans	wer any one question.	3
		(1)	Write note on an ideal diode.	
		(2)	Explain zener break down mechanism.	
	(d)	Ans	wer any one :	5
		(1)	Give the energy band description of conductor, semiconductor and insulators.	
		(2)	Discuss the behaviour of p-n junction under forward and reverse biasing.	
3	(a)	Ans	wer following objective questions.	4
		(1)	What is potential energy ?	
		(2)	State work energy theorem.	
		(3)	What is centre of mass?	
		(4)	Give the statement of Newton's third law of motion.	
	(b)	Answer any one :		2
		(1)	A body of mass 300 gm moves with velocity	
			$3\hat{i} + 4\hat{j}_{m/s}$. What is the kinetic energy of this body?	
		(2)	Two particles of mass 1 kg and 3 kg have position	
			vector $2\hat{i} + 3\hat{J}$ and $-2\hat{i} + 3\hat{J} - 4\hat{k}$	

		(1)	How much work is to be done to produce a velocity of 50 km/h to a bus of mass 2000 kg?	
		(2)	Three particles of mass 1,2 and 3 kg respectively are placed in x-y plane at positions (1,2), (-2,4) and	
			(-1,2). The forces acting on them are $-2\hat{l} + 3\hat{J}, 3\hat{j} - 4\hat{l}$	
			and $10\hat{l} N$ respectively. Find the position and centre of mass of the system.	
	(d)	Answer any one :		5
		(1)	What is centre of mass? Discuss the centre of mass for two and several particles in detail.	
		(2)	Discuss the elastic and inelastic collision.	
4	(a)	Ans	wer following objective questions.	4
		(1)	If frequency of rotating body is doubled and its mass is reduced to half then its angular momentum is	
		(2)	The moment of inertia plays the same role in rotational motion as the mass plays in linear motion. Is it true or not?	
		(3)	Write the statement of the Kepler's law.	
		(4)	The value of escape velocity on the surface of the earth is km/s.	
	(b)	Ans	wer any one :	2
		(1)	On applying a torque, a flywheel acquires on angular speed of 50 revolution in 10.5 sec. If moment of inertia of flywheel is 5 kg m 2 then calculate the torque acts on it.	
		(2)	A satellite is travelling at a 7000 km from the surface of the earth calculate the orbital velocity of the satellite. (Radius of the earth = 6.38×10^6 m)	
	(c)	Answer any one :		3
		(1)	Find the moment of inertia for rectangular bar.	
		(2)	Derive the equations of velocity and time period of a satellite.	

3

(c) Answer any one:

MBE-003-1011002]

3

[Contd...

	(d)	Answer any one:		5
		(1)	State and prove the theorems of momentum of inertia.	
		(2)	Write short note on Kepler's laws for planetary motion.	
5	(a)	Answer following objective questions:		4
		(1)	Define: Amplitude and time period.	
		(2)	What is damped oscillation ?	
		(3)	What is the unit of strain?	
		(4)	What are the theoretical values of Possion's ratio?	
	(b)	Answer any one :		2
		(1)	A local of 8 kg is suspended from a support using a wire of radius 0.2 cm, find the tensile stress at equilibrium (Take g=3.1 π m/s)	
		(2)	Determine the magnitude of the restoring force for a pendulum of mass 100 g that been pulled to an angle of $10^{\rm o}$ from the vertical. (Take g = 9.81 m/s ²).	
	(c)	Ans	wer any one :	3
		(1)	Write short note on 'Poisson's ratio'.	
		(2)	Explain damped oscillations.	
	(d)	Answer any one :		5
		(1)	State Hook's law and explain modulus of elasticity in detail.	
		(2)	Explain conservation of energy in simple harmonic motion.	